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Abstract Any history of mathematics that deals with Mesopotamian mathematics

will mention the use of tables of reciprocals and multiplication in sexagesimal

place-value notation—perhaps also of tables of squares and other higher arithmetical

tables. Less likely there is a description of metrological lists and tables and of tables

of technical constants. All of these belong to a complex of aids for accounting that

was created during the “Ur III” period (twenty-first c. BCE). Students’ exercises from

the Old Babylonian period (2000–1600 BCE) teach us something about their use. First

metrological lists then metrological tables were learned by heart. These allowed the

translation of real measures into place-value measures in a tacitly assumed basic unit.

At an advanced level, we see multiplications, where first two factors and then the

product are written in sequence on a clay tablet for rough work. Problem texts show

us more about the use of the metrological tables and the tables of technical constants.

Neither genre allows us to see directly how additions and subtractions were made, nor

how multiplications of multi-digit numbers were performed. A few errors in Old

Babylonian problem texts confirm, however, that multiplications were performed on

a support where partial products would disappear once they had been inserted—in a

general sense, some kind of abacus. Other errors, some from Old Babylonian period

and some others from the Seleucid period (third and second c. BCE), show that the

“abacus” in question had four or five sexagesimal levels, and textual evidence reveals

that it was called “the hand”. This name was in use at least from the twenty-sixth c.

BCE until c. 500 BCE. This regards addition and subtraction from early times onward,

and multiplication and division in Ur III and later. A couple of problem texts from the

third millennium deals with complicated divisions, namely divisions of large round

numbers by 7 and by 33. They use different but related procedures, suggesting that no

standard routine was at hand.
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Introduction: The Familiar

Any history of mathematics that deals with Mesopotamian or more narrowly with

Babylonian mathematics will speak of tables of reciprocals and multiplication in

sexagesimal place-value notation—perhaps also of tables of squares and other higher

arithmetical tables such as n3 and n2 � (n + 1).1 It is possible though less plausible

that they also mention metrological tables and tables of technical constants.

Let us start by describing this system, postponing the discussion of its use and

general historical setting.

The underlying number system, as stated, was a sexagesimal place-value nota-

tion, whereas ours is a decimal place-value notation. In our notation, the digit “7”

may refer to the number seven, but just as well to 7 � 10, 7 � 102, …, or to

7 � 10−1, 7 � 10−2, 7 � 10−3, …; what is actually meant is determined by its

location within the sequence of digits—its “distance from the decimal point”.

Similarly, a Mesopotamian digit “7” may stand for 7, 7 � 60, 7 � 602, …, as well

as 7 � 60−1, 7 � 60−2, ….

In the Mesopotamian notation, however, there was no analogue of the decimal

point and thus no way to determine absolute magnitude from the distance to it.

There was also no sign for zero, and in principle, “16 40” might thus mean not only

(16 � 60 + 40) � 60n but also (16 � 602 + 0 � 601 + 40) � 60n, etc.2 This may

For Ying

1See, for instance, the popularizations (Neugebauer 1934) and (Neugebauer 1957), on which many

general histories build. Since they are of no particular importance in what follows, I shall not return

to the higher arithmetical tables.
2Such intermediate zeroes only came in current use (most often not for a missing sexagesimal

place but for missing units or tens) in the Seleucid epoch (third to second century BCE), even

though two texts from around 1600 BCE [TMS XII and XIV, see Høyrup (2002a:15 n. 16)] indicate

them occasionally, and two ambiguous fragments from the intervening period seem to suggest

continuity rather than Seleucid reinvention. This is one of several indications that Mesopotamian

calculators did not think of their system solely as sexagesimal but also (perhaps predominantly) as

a “seximal-decimal” notation (just as Roman numerals may be thought of as “dual-quintal”).

One or two lines in the extensive corpus of Seleucid astronomical texts may even contain a

final zero; the interpretation is quite dubious, however [Neugebauer 1955: I. 121, 166, 208]. In any

case, final zeros never came into in widespread, not to say general use.

With or without final zero, the Babylonian placeholder, a mere punctuation mark, was

something quite different from our zero. Our zero, beyond serving as placeholder, is also a number,

the outcome of a subtraction a − a. When encountering such subtractions, the Old Babylonian

texts might say “one is as much as the other” or “it is missing”—or they would, literally, treat the

outcome as not worth speaking about and not state any result (Høyrup 2002a: 293). The situation

never occurs in later texts.
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seem odd to us, but we shall see that the inherent ambiguity in this floating-point

notation probably created no problems in the context where it served.

In some of the text types that we shall discuss the order of magnitude plays no

role—just as it plays no role when we look at a slide ruler whether “2.5” stands for

2.5, 25 or 0.25 (indeed, the same position of the slide rule gives us 2.5 � 4,

25 � 400 and 0.25 � 0.4) (Fig. 1). In such cases, we may render what appears as

“16 40” as 16.40 (or 16..40 if we suspect an empty intermediate order of magnitude

is intended). In other texts, a specific order of magnitude is certainly meant—just as

3.1416 and certainly not 314.16 is meant where the modern slide rule writes p. If

“16 40” is to be interpreted as 16 � 602 + 40 � 60, we shall translate it 16``40`; if

it is to be understood as 16 � 60 + 40, we shall write 16`40, and if it stands for

16 + 40 � 60−1, we shall write 16°40´ (when it is not needed as a separator, “°”

will be omitted). 30´ thus means 1
2
, while 10´´ means 1

360
.3

This generalization of our modern degree–minute–second notation for time and

angles (which descends via ancient Greek astronomy from the Mesopotamian sys-

tem) has the advantage that no zeroes are written which are not in the original text

(except those indicating missing units, without which the tens could not be identified

as such); one may omit the pronunciation of the ‘and’ and keep them as tacit

knowledge, just as the Mesopotamian calculators did with their knowledge about the

intended order of magnitude—they wrote nothing corresponding to `, ° and ´.

The place-value notation was not needed for and also hardly used for additions

and subtractions; we shall return to that issue. Its purpose was to serve multipli-

cation and division.

In our algorithm for multiplication, we make use of a multiplication table with

10 � 10 entries, which we learn by heart. The Mesopotamian calculators, however,

did not need 60 � 60 entries. They were trained on tables where important

“principal numbers” were multiplied by 1, 2, 3, …, 19, 20, 30, 40 and 50. So,

18 � 37 would have to be found as 18 � 30 + 18 � 7.

The term “division” may refer either to a type of question or to a procedure. The

Mesopotamian calculators were fully familiar with the question “what shall I

multiply by b in order to get a”—our equation bq = a, whose answer is q ¼ a
b
, but

they had no standard procedure by which to produce directly the number q from

the numbers a and b. Instead, if possible, they made use of a multiplication, finding

3This notation was introduced by Assyriologists in the early twentieth century. Later, various

alternatives have been used, the most widespread of which will write 7`13°41´40´´ as 7,13;41,40.

It is particularly advantageous in the analysis of mathematical-astronomical texts.
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q as a� 1
b
. For this purpose, they employed a table of reciprocals, called IGI,4 copied

so often in school that it was learned by heart—Fig. 2 shows the standard version.5

In most practical computation, the coarse grid provided by the standard table was

sufficient. We have a few tables listing approximate reciprocals of “irregular

numbers”, that is, numbers that do not have a reciprocal that can be expressed as a

finite sexagesimal fraction. They may have been computed as school exercises or as

schoolmasters’ experiments—we do not know; but in any case, they show that

approximate reciprocals of irregular numbers could be determined. We also know a

technique that was used to find the reciprocals of regular numbers that did not

appear in the standard table. As a simple illustration, we may pretend that

A = 44.26.40 does not appear and try to find 1
A
. We observe that the final part of the

Fig. 1 A circular slide rule from ca. 1960

Author’s photo

4Sumerian is conventionally transliterated as small caps (sometimes as spaced writing if we believe

to know the pronunciation and as small caps or capital letters if we use sign names).
5Since 1.12, 1.15 and 1.20 already appear to the right as IGI 50, IGI 48 and IGI 45, respectively, they

are sometimes omitted to the left; moreover, some early tables have as their first line “Of sixty, its 1
3

…”. Originally, the table thus seems to have been thought of as fractions of 60 and not of 1, that
is, as reciprocals; since the table served in floating-point calculations, this was of no
consequence.
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number is 6.40, which is the reciprocal of 9.6 We therefore write A as a sum,

A = 44.20.0 + 0.6.40, and find that 9 � A = 6.39.0 + 0.1.0 = 6.40. Now, 6.40 is

still the reciprocal of 9, whence 9 � 9 � A = 1. Therefore, 1
A
¼ 9� 9 ¼ 81.

The selection of principal numbers for multiplication tables is closely related to

the table of reciprocals and its use: the only irregular number to appear as a

principal number is 7, while all two-place numbers of the right column of the table

of reciprocals appear, as do a few others (2.15 and 4.30) that may be derived from

entries in the standard table by doubling one side and halving the other.

Why?

In order to understand to the full how this system was used, we need to look at the

purpose for which it was created. The place-value idea may have been in the air as a

mere notation for centuries, but the system connecting notation and tables was a

creation of the twenty-first century BCE,7 a period known as “Third Dynasty of Ur”

or, for simplicity, Ur III. Early in this period, an extremely centralized system of

economic management was created, with overseer scribes directing labour troops

and responsible for costs as well as produce. As an example, we may consider how

to calculate the labour and barley values of a ditch with length l and rectangular

cross section w � d. In practical life, horizontal extensions were measured in units

NINDAN (1 NINDAN � 6 m), subdivided into 12 cubits, each of which consisted of 30

fingers; vertical extensions were measured in cubits. So, firstly, l and w were

Of 1, its 2/3 [is] 40

Its half [is] 30

3, its IGI 20

4, its IGI 15

5, its IGI 12

6, its IGI 10

8, its IGI 7 30 

9, its IGI 6 40 

10, its IGI 6

12, its IGI 5

15, its IGI 4

16, its IGI 3 45 

18, its IGI 3 20 

20, its IGI 3

24, its IGI 2 30 

25, its IGI 2 24

27, its IGI 2 13 20 

30, its IGI 2

32, its IGI 1 52 30 

36, its IGI 1 40 

40, its IGI 1 30 

45, its IGI 1 20 

48, its IGI 1 15 

50, its IGI 1 12 

54, its IGI 1 6 40 

1, its IGI 1

1 4, its IGI 56 15 

1 12, its IGI 50

1 15, its IGI 48

1 20, its IGI 45

1 21, its IGI 44 26 40

Fig. 2 Translation of the table of reciprocals

6Jöran Friberg has introduced the very adequate name “trailing part algorithm” for the technique.
7Here and elsewhere, I follow the “middle chronology”, as do most Assyriologists.
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expressed in the “basic unit” NINDAN
8 as place-value numbers, and d was similarly

expressed as a place-value number of cubits. To find the total volume as the product

of these three numbers would now be a straightforward operation, since the unit of

volume was NINDAN � NINDAN � cubit. In contrast, it would be quite laborious to

find it directly, for instance, from l = 8 NINDAN 3 cubit, w = 2 cubit 15 fingers, d = 2

cubit 10 fingers. Once the volume had been found, the number of man-days

required would follow from division by the amount of dirt a worker was supposed

to dig out per day (that is, multiplication by its reciprocal), and the barley value

from multiplication of the man-days by the daily barley wage of a worker—both

again expressed in sexagesimal place-value multiples of basic units for volume,

respectively, capacity measure. Once the place-value expression of a metrological

value had been found, it would finally have to be reconverted into normal

metrology, which would presuppose knowledge of the absolute order of magnitude

to which the place-value numbers corresponded.

The conversion of the metrological units into place-value units and vice versa

was made by means of “metrological tables”. These would tell not only the con-

version of the single units but also their multiples. For instance, the table for

horizontal extension would start as shown in Fig. 3,9 stating not only that a finger is

10 (namely 10´´ NINDAN) but also that two fingers are 20, etc. These tables were

copied so oft in school that future calculators knew them by heart; in this way,

conversion of a composite expression like 8 NINDAN 3 cubit was reduced to an

addition—there was no need to multiply 5 (the converted value of the cubit) by 3.

Such metrological tables existed for weight, capacity, horizontal and vertical

extension and area (volumes were measured in area units, the standard area 1

SAR = 1 NINDAN
2 being presupposed to be provided with a default thickness of

1 cubit).

A final group of tables contains technical constants.10 Some of these are norms

for work—how much dirt is a worker supposed to dig out in a day or to carry a

fixed distance in a day, etc. Others might serve in geometrical computation. For the

circle area, we find the constant 5—to be understood as 5´: Under the assumption

that the perimeter p is 3 times the diameter d, the area is indeed 1
12
p2 ¼ 50 � p2. For

the diameter, we find the constant 20 (to be understood as 20´): d ¼ 1
3
p ¼ 200 � p.

Technical constants that might turn up as divisors were chosen as regular

numbers, preferably as numbers appearing in the table of reciprocals; that explains

8Obviously, any unit 60n NINDAN would do in principle, but since the NINDAN was an existing unit

abundantly used in practical life, we may take for granted that the calculators would think in terms

of NINDAN and not, for instance, 1
60

NINDAN.
9Translated from the edition in Proust (2008: 42). The actual specimen goes no further, but it is

only the beginning of the ideal complete table, known in total from the combination of such

fragments.
10These are less well-treated in the general literature than the arithmetical tables. A recent thorough

analysis is Robson (1999).
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why the reciprocals of such numbers would also turn up as principal numbers for

multiplication.

Exactly as the floating-point calculations on the slide rule of an engineer fifty

years ago, calculations in the place-value system could only serve for intermediate

calculations, and they would normally leave just as few traces in the written record.

We have the various tables and even evidence for the way they constituted an

ordered curriculum during the Old Babylonian period (2000–1600 BCE)—remains

from Ur III are very rare, just sufficient to show that the system had been created.

We also have Old Babylonian student exercises of multiplication showing two

factors and their product (but no intermediate calculations). However, the above

description of the full combined use of the various tables is based on reconstruction

and on Old Babylonian mathematical school texts,11 not on real administrative

records.

Addition and Abacus

As mentioned, we have no indication that the place-value notation was of any use

for additions and subtractions. In particular, we have no exercise tablets with

additions as we have for multiplications—if the multiplication goes beyond what

follows directly from the multiplication tables and asks for the addition of partial

products, these leave no traces on the tablet and must therefore have been

manipulated in a different medium. For instance, the outcome of 1.03.45 � 1.03.45

is stated directly to be 1.07.44.03.45 (UET 6/2 222, in Robson (1999: 252))—

certainly a calculation few if anybody would be able to perform by mere mental

calculation combining multiplication table entries.

“… leave no traces”—or rather, leave only rare indirect traces (Høyrup 2002b).

One of these is problem #12 of the text BM 13901 (ed. Neugebauer 1935: III, 3),

where the outcome of the multiplication 10´50´´ � 10´50´´ is stated to be 1´57´´

46´´´40´´´´ instead of 1´57´´21´´´40´´´´ (since the problem is inhomogeneous of the

second degree, we can see which absolute order of magnitude is intended).

1 finger 10

2 fingers 20

3 fingers 30

4 fingers 40

5 fingers 50

6 fingers 1

7 fingers 1.10

8 fingers 1.20

9 fingers 1.30

1
/3 cubit 1.40

1
/2 cubit 2.30

2
/3 cubit 3.20

1 cubit 5

1
1
/3 cubit 6.40

1
1
/2 cubit 7.30

1
2
/3 cubit 8.20

2 cubits 10

…

Fig. 3 Beginning of the metrological table for horizontal extension

11See, for instance, VAT 8389 #1, as discussed in Høyrup (2002a: 77–82).
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25 (25´´´) has thus been added erroneously in the calculation to 21 (21´´´), and the

only reasonable explanation for that is that 25 has arisen as a partial product and has

been inserted twice instead of once—something that could never happen in our

paper algorithm, where we see which steps have already been performed.

Howcould25arise as apartial product in the right order ofmagnitude?There seems to

be only one straightforward way, namely by a calculation of 50´´ � 50´´ as (5 � 5)

(10´´ � 10´´) = 25 � 1´´´40´´´´ = 25´´´ + 25 � 40´´´´ = 25´´´ + 16´´´40´´´´.

That may sound strange. We know multiplication tables with 50 as principal

number and thus containing 50 � 50. However, if we compare the number of

extant tables of this kind with the number of surviving copies of the table of

reciprocals we see that it was hardly learned by heart—learning tables by heart was

done by repeated copying. 12 So, the conclusion appears to be that at least this

computation was made on an instrument where you had to remember where you

were in the process because a step, once performed, became invisible—similarly to

modern pocket calculators. The instrument could be some kind of reckoning board

making use of counters, but it is difficult to exclude other possibilities (however, the

numbers occasionally inscribed in empty spaces of mathematical tablets offer good

evidence that writing on clay with subsequent deletion, in the style of a medieval

dust abacus, was not the medium—it is also difficult to see why the number of

“places” available on a support of this kind should be restricted). In any case,

subtraction was spoken of (in different Sumerian words, and thus without linguistic

continuity) during Ur III and in Seleucid times as “lifting up”, which can hardly

refer to anything but the removal of counters.

The text TMS XIX #2 (ed. Bruins and Rutten 1961: 103, pl. 29) provides us with

supplementary evidence. Here, two errors are made.13 In line 4, 14´48´´53´´´

20´´´´ � 14´48´´53´´´20´´´´ is stated to be 3´39´´[28´´´]44´´´´26(5)40(6), not 3´39´´

28´´´43´´´´27(5)24(6)26(7)40(8)). In lines 6–7, 11´´6´´´40´´´´ is added to the number

3´39´´[28´´´]44´´´´26(5)40(6), and the result is stated to be 3´50´´36´´´43´´´´40(5)

instead of 3´50´´35´´´24´´´´26(5)40(6). In the former case, a string “43 27” has been

changed into “44 26”, after which the repeated “4 26” causes the calculator to

change “44 26 24 26 40” into “44 26 40” (the number is used further on and

therefore cannot be a copyist’s mistake). The second error is more complex, but

even here it looks as if a unit has been misplaced in the order of fourths instead of

that of thirds (see Høyrup 2002b: 196).

All in all, it thus seems that numbers were represented by counters placed on a

counting board (in cases or whatever was used to keep together counters belonging

to the same group) in such a way that a unit in one order of magnitude could easily

12Neugebauer and Sachs (1945: 12, 20) lists 14 standard tables of reciprocals but only one “single

multiplication table” (the type that reflects training) with principal number 50. In Neugebauer

(1935: I, 10–13, 36), the numbers are, respectively, 25 and 0.
13In both cases, Evert Bruins’s transliteration differs from Marguerite Rutten’s hand copy of the

cuneiform, but since the tablet is one of those which the Louvre had mislaid, the transliteration is

based on the hand copy and not on fresh collation with the tablet; the deviations must hence be due

to erroneous readings or to misguided attempts to repair. I therefore build on the hand copy.
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be misplaced or pushed accidentally into a neighbouring order but not as easily into

the tens of the same or a neighbouring order of magnitude. One possibility—

probably the most obvious for us—is shown in the upper part of Fig. 4, but the

configuration shown in the lower part is also possible, provided distinct counters

were used for ones and tens (which would correspond to the written numerals).

This concerns how additive (and, we may assume, subtractive) operations were

performed in the context of place value computation during the Old Babylonian

period. As Proust, Christine (2000) has discovered, however, other error types offer

further insight. In a large table of many-digit reciprocals from the Seleucid epoch

(AO 6456), repeatedly two sexagesimal places are added together, 45.7 becoming

52, 40.14 appearing as 54, etc. This happens only in the interior of numbers of more

than 4 digits, as if computations had been performed on an instrument of limited

capacity. An Old Babylonian table listing continued doublings of 2.5 (N3958; 2.5

until 2.5 � 239) gives support to that interpretation: when the numbers grow

beyond 5 places, they are written as two numbers separated by a separation char-

acter, apparently corresponding to calculations on two separate devices (in the end,

when space in the column becomes scarce, the separation character is omitted). The

first such number “10 + 6.48.53.20” can be reduced without difficulty to

10.6.48.53.20; soon, however, the right-hand part itself grows beyond five places,

and the correct interpretation of “5.20 + 3.38.4.26.40” would be 5.23.38.04.26.40,

but performing this operation correctly asks for meticulous book-keeping about

places, and errors as those that abound in the Seleucid table are easily explained—

as formulated by Proust (2000: 302), they are the “scars of recombination of two

separate pieces” (or even, in one entry, three pieces).

Fig. 4 Two possible configurations of the Old Babylonian abacus
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Proust also suggests that the device may have carried the name “the hand”,

pointing to the term ŠU NU TAGA, “which the hand cannot grasp” used about 604, a

five-place number, and referring to the present author for supplementary evidence.

ŠU NU TAGA is known from Old Babylonian times, but the supplementary evidence

spans most of Mesopotamian history: already in the mid-third millennium, ŠU.NIGIN,

“the hand holds”, designates the total of an account (below, we shall encounter

more evidence from the same epoch); in the Old Babylonian text Db2-146, an

intermediate result is put “on your hand” and referred to afterwards as “your hand”

(Høyrup 2002a: 258f), and the astronomical procedure text BM 42282 + 42294

(probably between the sixth and the fourth century BCE (ed. Brack-Bernsen and

Hunger 2008)) prescribes that “you hold in your hand your year”, which makes no

sense unless the current year is inserted in a calculational procedure or device.

In texts from Ur III as well as the Seleucid epoch, we also see that subtraction is

spoken of as “taking up” or “lifting up” (ZI in Ur III, NIM in Seleucid times). The

introduction of a new word in late times probably means that the terms describe an

extra-linguistic operation—presumably to “take up” counters from the counting

board.

The early appearance of the name “hand” shows that this board is much older than

the place-value system. However, the system for counting had been sexagesimal

since the appearance of writing in the later fourth millennium BCE, only with distinct

signs for 1, 10, 60, 600, 3600, 36,000 and 216,000; it was thus an absolute-value

system. A counting board that would serve calculation in this system would therefore

not only be of equal use for addition and subtraction of place-value numbers, it may

even have inspired the very invention of the place-value notation—which however

was to remain “in the air” until the full system with appurtenant tables was devised.

The Centesimal System and the Decadic Notation

An interesting further or parallel development was discovered a few years ago in

Old Babylonian Mari and other cities in the Middle-Euphrates region, towards the

Mesopotamian north-west: a place-value system with base 100 (Chambon 2012). It

was only used for integers and served the counting of people and quantities of the

capacity unit SILÀ. It uses the same basic signs for 1 and 10 as the sexagesimal

place-value system, and it is therefore likely to be an adaption of the already known

sexagesimal precursor;14 however, a partially similar system is found in Ebla

somewhat to the west around 2400 BCE, yet indicating the order of magnitude of

places by mean of number words for 100, 1000 and 10,000 and using the signs of

the Sumerian absolute-value counting within each place. The Ebla notation may

14Some Mari scribes were trained in sexagesimal place-value arithmetic in the early eighteenth

century, so it was not unfamiliar. Moreover, the sign for units was differently oriented in the place

value and in the traditional absolute-value systems (vertical respectively horizontal), and the

centesimal notation agrees on this account with the sexagesimal place-value system.
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also have been inspired by an abacus (of a type corresponding to the local spoken

numeral system, which was decadic, that is, with base 10), but it can just as well

have been a direct emulation of the way a number like 36,892 was spoken.

Similarly, the later Mari system may have received inspiration from the Ebla

notation and not only from the sexagesimal place-value system, or the similarity

may be accidental, caused by the shared decadic spoken numerals.

Whereas the Sumerian spoken numeral system had been sexagesimal, the

numerals of Semitic languages are indeed decadic, as are those of Indoeuropean

languages. That is the underlying reason that Ebla, Mari and other north-western

cities made use of the centennial system—the native language in this region was

Amorite or Akkadian15 or some other Semitic dialect. In the former Sumerian

south, it is likely that the daily language was already Akkadian during Ur III, even

though the official language of the state (and thus the language of scribehood) was

still Sumerian; it certainly was when the Old Babylonian mathematical texts were

written, but outside the area just mentioned the impact of general language on

number writing was more modest: 5782 would be written 5 līm 7 mē 82 (5 thou-

sand 7 hundred 82, 82 being written in the traditional Sumerian absolute-value

system, as 60 + 20 + 2), as it had been in Ebla.

We have no—and in all probability there were no—conversion tables between

this almost-decadic number notation and the sexagesimal notation. In cases where

the numbers did not enter calculations that would have no importance; however, if

they were to be added (which might happen if, for example, they counted numbers

of workers engaged in various parts of a larger project), we may speculate whether

the counting board was used for this purpose with a different understanding of its

structure; we may also guess that such non-standard ways to use the abacus might

have served for operation on for instance capacity measures,16 in particular before

the implementation of the place-value system—but both suggestions remain mere

conjectures.

Third Millennium Difficult Division

As mentioned already, we have evidence that Old Babylonian calculators were able

to find approximate reciprocals of irregular numbers. However, we have no hints as

to the methods that were used.

15Akkadian is the language whose main dialects in the second and first millennium are Babylonian

and Assyrian.
16The fundamental capacity unit was a SILÀ (ca. 1 l). In Ur III and the Old Babylonian period, it

was subdivided sexagesimally into 60 GÍN and the GÍN again in 180 ŠE. 10 SILÀ were 1 BÁN, and

6 BÁN constituted 1 BARIGA. 5 BARIGA, finally, made up a GUR, and GUR were counted in

absolute-value sexagesimal numbers. So, for calculating grain quantities (where SILÀ would nor-

mally be the smallest unit taken into account), columns or cases with values 1, 10, 60 and 300 for

successive cases or columns would be adequate.
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From the mid-third millennium BCE, on the other hand, we have three texts that

show something about how large round numbers could be divided by irregular

divisors.

Two of the texts are from the city Šuruppak and can be dated to c. 2550 BCE

(Høyrup 1982). They both deal with the distribution of a “storehouse” of barley to

workers, each of whom receives 7 SILÀ. The “storehouse” of Šuruppak of the time

was expected to contain 40` (=2400) GUR.MA, each GUR.MA (“great GUR”) consisting

of 8`(=480) SILÀ (that is, 1 “storehouse” = 1,152,000 SILÀ). The problem is thus to

divide 2400 � 480 by 7. One of the texts (TMS 50) gives the correct answer

45``42`51 (=164,571) men, 3 SILÀ being “left on the hand”, that is, left as remainder

on the counting board. The other (TMS 671), however, finds 45``36` (=164,160)

men. As it turns out, this is an intermediate result if the correct solution is found in

the following way: first, we divide the number of GUR.MA in a storehouse by 7; that

is, we find how many times 7 GUR.MA is contained in 40` GUR.MA); the answer is 342

times, with a remainder of 6 GUR.MA. Then, we multiply by the number of times 7

SILÀ is contained in 7 GUR.MA, which is obviously 8` = 480 times, getting 164,160—

the very result obtained in the second text. This is thus as many men as will get 7

SILÀ each from the storehouse if we forget about the remainder. However, if we

divide the remainder of 6 GUR.MA by 7 SILÀ, we find that 411 more men will receive

their ration (in total thus 164,571 men, the result stated in the first text), with a

remainder of 3 SILÀ.

It is impossible to find reasonable alternative procedures that also have the result

stated in the mistaken text as an intermediate result. We may therefore be confident

that this was how the result was reached; the analysis leaves open the question,

however, how 40` (=2400) and 8`(=480) were divided by 7.

The third text (TM.75.G.1392) is from Ebla and from c. 2400 BCE; I follow Jöran

Friberg’s interpretation (1986: 16–21). The text appears to show a method for

finding out how much grain has to be distributed to 260,000 persons, if 33 persons

receive 1 gú-bar.17

It is stated (for simplicity, the sub-units are translated as fractions in the left

column, while the middle column reduces these fractions; both follow Friberg) that

3 4
120

g�u-bar ð¼3 1
30
g�u-barÞ for 100 persons

30 6
20
g�u-bar ð¼30 3

10
g�u-barÞ for 1000 persons

303 4
120

g�u-bar ð¼303 1
30
g�u-barÞ for 10;000 persons

3030 6
20
g�u-bar ð¼3030 3

10
g�u-barÞ for 100;000 persons

6060 1
2
2
20

2
120

g�u-bar ð¼6060 6
10

1
60
g�u-barÞ for 200;000 persons

1818 24
120

g�u-bar ð¼1818 2
10
g�u-barÞ for 60;000 persons

In all: 7879 g�u-bar of barley for 260,000 persons:

17The gú-bar is a local Ebla unit; the transliteration is written in italics because it renders a syllabic

writing of a Semitic word.
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Since 33 persons receive 1 gú-bar, 3 � 33 = 99 persons receive 3 gú-bar.

100 = 99 + 1 persons therefore should receive 3 g�u-barþ 1
33
g�u-bar, etc. Firstly we

notice, however, that all values are slightly rounded: 1
33
is replaced by 1

30
and 10

33
¼ 30

99

by 3
10
; in the final summation, 1

2
2
20

2
120

þ 4
20
¼ 49

60
is approximated as 1. Secondly, we

observe that the successive values are not obtained by simple multiplication (by 10

respectively 2). Precisely how the values in the successive lines are found we

cannot decide, but in any case we see that the division of 260,000 by 33 (or, in

classical formulation, the measurement of 260,000 persons by 33 persons) is found

through filling-out: first, by decupling and doubling, we go as far as possible, that

is, until 200,000 persons; 60,000 persons remain, whose allocation is probably

found by multiplying the allocation of 10,000 person by 6 (no rounding needed).

Quite plausibly, the simpler divisions in the single lines were carried out in a similar

way.

We further observe that the trick used in the Šuruppak texts is different from the

method of the Ebla text (while, of course, its simpler divisions may or may not have

been performed as fillings). The two texts do not present us with a standard way (and

certainly not with an “algorithm”) for performing divisions by irregular numbers;

instead, they represent systematic exploration—in Friberg’s words (1986: 22),

the “current fashion” among mathematicians about four and a half millennia years ago was

to study non-trivial division problems involving large (decimal or sexagesimal) numbers

and “non-regular” divisors such as 7 and 33.

Nothing prevents, however, that such exploration could eventually lead to the

creation of standard methods and that these would come to be used by the Old

Babylonian calculators.

Long-Time Developments—Summary and Conclusion

Through accounting and metrologies, Mesopotamian mathematics can be followed

back to the “proto-literate” period (c. 3300–3000 BCE) where writing was created

(created, indeed, in order to serve in accounting, by providing the context that gave

meaning to the numbers of the accounts). But we know nothing about the com-

putational techniques in use by then.

Only Šuruppak, around 2550 BCE, provides us with some insights. Šuruppak

presents us with evidence of several kinds that the “hand” reckoning board was in

use, and it gives us the first example of the division by an irregular number. From

Šuruppak, we also have the earliest table of squares, where the side is given in

length metrology and the area measured in area units (Neugebauer 1935: I, 91).

Three more square tables come from the following century (Edzard 1969; Feliu

2012; Friberg 2007: 419–427); one of them also lists rectangular areas, one of the

sides being constantly 1` NINDAN.
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During the centuries preceding Ur III, we find several instances of notations that

suggest ongoing groping for the place-value idea, but almost all contain mistakes

showing that the system was not yet in existence (Powell 1976).18 The system was

only to be created during Ur III—and its complex combination of a number

notation and the variety of table types without which it would be of no use shows

that it was certainly a deliberate creation, not the outcome of accumulated acci-

dental developments.

The Ur III state broke down around 2000 BCE, but the scribes of the less centralized

Old Babylonian successor states were still trained in place-value calculation. After the

collapse around 1600 of the final Old Babylonian state, the Babylon of the Hammurabi

dynasty, we know less. Scholar-scribes were still taught some rudiments—

Ashurbanipal, the last important Assyrian king (r. 668–631 BCE), who had originally

been meant to become a high priest, boasts that he is able to perform multiplications

and find reciprocals. That seems to be the high point of the mathematics he knows

about: in same text, he claims to be able to read tablets “from before the flood”, that is,

from the mid-third millennium, which appears not to be true—but real scholar-scribes

at his court could do it. Those who took care of mathematical administration after the

collapse of the Old Babylonian state were hardly scholar-scribes—there is evidence that

only the most basic vocabulary surrounding the place-value system was conserved in

Sumerian. However, at the creation of mathematical astronomy from the seventh

century BCE onward, the place-value system again came in use albeit within a very

restricted environment. As we have seen, this environment still used the “hand”

reckoning board, and it also knew the trailing part algorithm.

Mathematical astronomy survived at least until the late first century CE (Hunger

and de Jong 2014); by then, mathematical administration had given up the cunei-

form heritage since long. The disappearance of mathematical astronomy therefore

entailed the final demise of the Mesopotamian calculation techniques, after their

having been practised for more than 2000, some of them for at least 2500, perhaps

3400 years.
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